Exercise 2.5.1

Solve Laplace's equation inside a rectangle $0 \leq x \leq L, 0 \leq y \leq H$, with the following boundary conditions [Hint: Separate variables. If there are two homogeneous boundary conditions in y, let $u(x, y)=h(x) \phi(y)$, and if there are two homogeneous boundary conditions in x, let $u(x, y)=\phi(x) h(y).]:$
(a) $\frac{\partial u}{\partial x}(0, y)=0, \quad \frac{\partial u}{\partial x}(L, y)=0, \quad u(x, 0)=0, \quad u(x, H)=f(x)$
(b) $\frac{\partial u}{\partial x}(0, y)=g(y), \quad \frac{\partial u}{\partial x}(L, y)=0, \quad u(x, 0)=0, \quad u(x, H)=0$
(c) $\quad \frac{\partial u}{\partial x}(0, y)=0, \quad u(L, y)=g(y), \quad u(x, 0)=0, \quad u(x, H)=0$
(d) $u(0, y)=g(y), \quad u(L, y)=0, \quad \frac{\partial u}{\partial y}(x, 0)=0, \quad u(x, H)=0$
(e) $\quad u(0, y)=0, \quad u(L, y)=0, \quad u(x, 0)-\frac{\partial u}{\partial y}(x, 0)=0, \quad u(x, H)=f(x)$
(f) $\quad u(0, y)=f(y), \quad u(L, y)=0, \quad \frac{\partial u}{\partial y}(x, 0)=0, \quad \frac{\partial u}{\partial y}(x, H)=0$
(g) $\quad \frac{\partial u}{\partial x}(0, y)=0, \quad \frac{\partial u}{\partial x}(L, y)=0, \quad u(x, 0)=\left\{\begin{array}{ll}0 & x>L / 2 \\ 1 & x<L / 2\end{array}, \quad \frac{\partial u}{\partial y}(x, H)=0\right.$
(h) $u(0, y)=0, \quad u(L, y)=g(y), \quad u(x, 0)=0, \quad u(x, H)=0$

Solution

Part (a)

$$
\begin{aligned}
& \nabla^{2} u=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0, \quad 0 \leq x \leq L, 0 \leq y \leq H \\
& \frac{\partial u}{\partial x}(0, y)=0 \\
& \frac{\partial u}{\partial x}(L, y)=0 \\
& u(x, 0)=0 \\
& u(x, H)=f(x)
\end{aligned}
$$

Because Laplace's equation and all but one of the boundary conditions are linear and homogeneous, the method of separation of variables can be applied. Assume a product solution of the form $u(x, y)=X(x) Y(y)$ and substitute it into the PDE

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0 \quad \rightarrow \quad \frac{\partial^{2}}{\partial x^{2}}[X(x) Y(y)]+\frac{\partial^{2}}{\partial y^{2}}[X(x) Y(y)]=0
$$

and the homogeneous boundary conditions.

$$
\begin{array}{lllll}
\frac{\partial u}{\partial x}(0, y)=0 & \rightarrow & X^{\prime}(0) Y(y)=0 & \rightarrow & X^{\prime}(0)=0 \\
\frac{\partial u}{\partial x}(L, y)=0 & \rightarrow & X^{\prime}(L) Y(y)=0 & \rightarrow & X^{\prime}(L)=0 \\
u(x, 0)=0 & \rightarrow & X(x) Y(0)=0 & \rightarrow & Y(0)=0
\end{array}
$$

Separate variables in the PDE.

$$
Y \frac{d^{2} X}{d x^{2}}+X \frac{d^{2} Y}{d y^{2}}=0
$$

Divide both sides by $X(x) Y(y)$.

$$
\frac{1}{X} \frac{d^{2} X}{d x^{2}}+\frac{1}{Y} \frac{d^{2} Y}{d y^{2}}=0
$$

Bring the second term to the right side. (Note that the final answer will be the same regardless of which side the minus sign is on.)

$$
\underbrace{\frac{1}{X} \frac{d^{2} X}{d x^{2}}}_{\text {function of } x}=\underbrace{-\frac{1}{Y} \frac{d^{2} Y}{d y^{2}}}_{\text {function of } y}
$$

The only way a function of x can be equal to a function of y is if both are equal to a constant λ.

$$
\frac{1}{X} \frac{d^{2} X}{d x^{2}}=-\frac{1}{Y} \frac{d^{2} Y}{d y^{2}}=\lambda
$$

As a result of applying the method of separation of variables, the PDE has reduced to two ODEs - one in x and one in y.

$$
\left.\begin{array}{rl}
\frac{1}{X} \frac{d^{2} X}{d x^{2}} & =\lambda \\
-\frac{1}{Y} \frac{d^{2} Y}{d y^{2}} & =\lambda
\end{array}\right\}
$$

Values of λ for which nontrivial solutions of these equations exist are called the eigenvalues, and the solutions themselves are known as the eigenfunctions. We will solve the ODE for X first since there are two boundary conditions for it. Suppose first that λ is positive: $\lambda=\alpha^{2}$. The ODE for X becomes

$$
X^{\prime \prime}=\alpha^{2} X
$$

The general solution is written in terms of hyperbolic sine and hyperbolic cosine.

$$
X(x)=C_{1} \cosh \alpha x+C_{2} \sinh \alpha x
$$

Take a derivative of it.

$$
X^{\prime}(x)=\alpha\left(C_{1} \sinh \alpha x+C_{2} \cosh \alpha x\right)
$$

Apply the boundary conditions to determine C_{1} and C_{2}.

$$
\begin{aligned}
& X^{\prime}(0)=\alpha\left(C_{2}\right)=0 \\
& X^{\prime}(L)=\alpha\left(C_{1} \sinh \alpha L+C_{2} \cosh \alpha L\right)=0
\end{aligned}
$$

The first equation implies that C_{2}, so the second one reduces to $C_{1} \alpha \sinh \alpha L=0$. No nonzero value of α satisfies this equation, so C_{1} must be zero. The trivial solution is obtained, so there are no positive eigenvalues. Suppose secondly that λ is zero: $\lambda=0$. The ODE for X becomes

$$
X^{\prime \prime}=0 .
$$

Integrate both sides with respect to x.

$$
X^{\prime}=C_{3}
$$

Apply the boundary conditions to determine C_{3}.

$$
\begin{aligned}
& X^{\prime}(0)=C_{3}=0 \\
& X^{\prime}(L)=C_{3}=0
\end{aligned}
$$

Consequently,

$$
X^{\prime}=0 .
$$

Integrate both sides with respect to x once more.

$$
X(x)=C_{4}
$$

Because $X(x)$ is nonzero, zero is an eigenvalue; the eigenfunction associated with it is $X_{0}(x)=1$. With this value for λ, solve the ODE for Y.

$$
Y^{\prime \prime}=0
$$

Integrate both sides with respect to y twice.

$$
Y(y)=C_{5} y+C_{6}
$$

Apply the boundary condition to determine one of the constants.

$$
Y(0)=C_{6}=0
$$

So then

$$
Y(y)=C_{5} y .
$$

Suppose thirdly that λ is negative: $\lambda=-\beta^{2}$. The ODE for X becomes

$$
X^{\prime \prime}=-\beta^{2} X .
$$

The general solution is written in terms of sine and cosine.

$$
X(x)=C_{7} \cos \beta x+C_{8} \sin \beta x
$$

Take a derivative of it.

$$
X^{\prime}(x)=\beta\left(-C_{7} \sin \beta x+C_{8} \cos \beta x\right)
$$

Apply the boundary conditions to determine C_{7} and C_{8}.

$$
\begin{aligned}
& X^{\prime}(0)=\beta\left(C_{8}\right)=0 \\
& X^{\prime}(L)=\beta\left(-C_{7} \sin \beta L+C_{8} \cos \beta L\right)=0
\end{aligned}
$$

The first equation implies that $C_{8}=0$, so the second one reduces to $-C_{7} \beta \sin \beta L=0$. To avoid getting the trivial solution, we insist that $C_{7} \neq 0$. Then

$$
\begin{aligned}
-\beta \sin \beta L & =0 \\
\sin \beta L & =0 \\
\beta L & =n \pi, \quad n=1,2, \ldots \\
\beta_{n} & =\frac{n \pi}{L} .
\end{aligned}
$$

There are negative eigenvalues $\lambda=-n^{2} \pi^{2} / L^{2}$, and the eigenfunctions associated with them are

$$
\begin{aligned}
X(x) & =C_{7} \cos \beta x+C_{8} \sin \beta x \\
& =C_{7} \cos \beta x \quad \rightarrow \quad X_{n}(x)=\cos \frac{n \pi x}{L} .
\end{aligned}
$$

With this formula for λ, solve the ODE for Y now.

$$
\frac{d^{2} Y}{d y^{2}}=\frac{n^{2} \pi^{2}}{L^{2}} Y
$$

The general solution is written in terms of hyperbolic sine and hyperbolic cosine.

$$
Y(y)=C_{9} \cosh \frac{n \pi y}{L}+C_{10} \sinh \frac{n \pi y}{L}
$$

Use the boundary condition to determine one of the constants.

$$
Y(0)=C_{9}=0
$$

So then

$$
Y(y)=C_{10} \sinh \frac{n \pi y}{L}
$$

According to the principle of superposition, the general solution to the PDE for u is a linear combination of $X(x) Y(y)$ over all the eigenvalues.

$$
u(x, y)=A_{0} y+\sum_{n=1}^{\infty} A_{n} \cos \frac{n \pi x}{L} \sinh \frac{n \pi y}{L}
$$

Use the final inhomogeneous boundary condition $u(x, H)=f(x)$ to determine A_{0} and A_{n}.

$$
\begin{equation*}
u(x, H)=A_{0} H+\sum_{n=1}^{\infty} A_{n} \sinh \frac{n \pi H}{L} \cos \frac{n \pi x}{L}=f(x) \tag{1}
\end{equation*}
$$

To find A_{0}, integrate both sides of equation (1) with respect to x from 0 to L.

$$
\int_{0}^{L}\left(A_{0} H+\sum_{n=1}^{\infty} A_{n} \sinh \frac{n \pi H}{L} \cos \frac{n \pi x}{L}\right) d x=\int_{0}^{L} f(x) d x
$$

Split up the integral on the left and bring the constants in front.

$$
A_{0} H \int_{0}^{L} d x+\sum_{n=1}^{\infty} A_{n} \sinh \frac{n \pi H}{L} \underbrace{\int_{0}^{L} \cos \frac{n \pi x}{L} d x}_{=0}=\int_{0}^{L} f(x) d x
$$

$$
A_{0} H L=\int_{0}^{L} f(x) d x
$$

So then

$$
A_{0}=\frac{1}{H L} \int_{0}^{L} f(x) d x
$$

To find A_{n}, multiply both sides of equation (1) by $\cos (m \pi x / L)$, where m is an integer,

$$
A_{0} H \cos \frac{m \pi x}{L}+\sum_{n=1}^{\infty} A_{n} \sinh \frac{n \pi H}{L} \cos \frac{n \pi x}{L} \cos \frac{m \pi x}{L}=f(x) \cos \frac{m \pi x}{L}
$$

and then integrate both sides with respect to x from 0 to L.

$$
\int_{0}^{L}\left(A_{0} H \cos \frac{m \pi x}{L}+\sum_{n=1}^{\infty} A_{n} \sinh \frac{n \pi H}{L} \cos \frac{n \pi x}{L} \cos \frac{m \pi x}{L}\right) d x=\int_{0}^{L} f(x) \cos \frac{m \pi x}{L} d x
$$

Split up the integral on the left and bring the constants in front.

$$
A_{0} H \underbrace{\int_{0}^{L} \cos \frac{m \pi x}{L} d x}_{=0}+\sum_{n=1}^{\infty} A_{n} \sinh \frac{n \pi H}{L} \int_{0}^{L} \cos \frac{n \pi x}{L} \cos \frac{m \pi x}{L} d x=\int_{0}^{L} f(x) \cos \frac{m \pi x}{L} d x
$$

Because the cosine functions are orthogonal, the second integral on the left is zero if $n \neq m$. As a result, every term in the infinite series vanishes except for the one where $n=m$.

$$
\begin{gathered}
A_{n} \sinh \frac{n \pi H}{L} \int_{0}^{L} \cos ^{2} \frac{n \pi x}{L} d x=\int_{0}^{L} f(x) \cos \frac{n \pi x}{L} d x \\
A_{n} \sinh \frac{n \pi H}{L}\left(\frac{L}{2}\right)=\int_{0}^{L} f(x) \cos \frac{n \pi x}{L} d x
\end{gathered}
$$

So then

$$
A_{n}=\frac{2}{L \sinh \frac{n \pi H}{L}} \int_{0}^{L} f(x) \cos \frac{n \pi x}{L} d x
$$

Part (b)

$$
\begin{aligned}
& \nabla^{2} u=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0, \quad 0 \leq x \leq L, 0 \leq y \leq H \\
& \frac{\partial u}{\partial x}(0, y)=g(y) \\
& \frac{\partial u}{\partial x}(L, y)=0 \\
& u(x, 0)=0 \\
& u(x, H)=0
\end{aligned}
$$

Because Laplace's equation and all but one of the boundary conditions are linear and homogeneous, the method of separation of variables can be applied. Assume a product solution of the form $u(x, y)=X(x) Y(y)$ and substitute it into the PDE

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0 \quad \rightarrow \quad \frac{\partial^{2}}{\partial x^{2}}[X(x) Y(y)]+\frac{\partial^{2}}{\partial y^{2}}[X(x) Y(y)]=0
$$

and the homogeneous boundary conditions.

$$
\begin{array}{lllll}
\frac{\partial u}{\partial x}(L, y)=0 & \rightarrow & X^{\prime}(L) Y(y)=0 & \rightarrow & X^{\prime}(L)=0 \\
u(x, 0)=0 & \rightarrow & X(x) Y(0)=0 & \rightarrow & Y(0)=0 \\
u(x, H)=0 & \rightarrow & X(x) Y(H)=0 & \rightarrow & Y(H)=0
\end{array}
$$

Separate variables in the PDE.

$$
Y \frac{d^{2} X}{d x^{2}}+X \frac{d^{2} Y}{d y^{2}}=0
$$

Divide both sides by $X(x) Y(y)$.

$$
\frac{1}{X} \frac{d^{2} X}{d x^{2}}+\frac{1}{Y} \frac{d^{2} Y}{d y^{2}}=0
$$

Bring the second term to the right side. (Note that the final answer will be the same regardless of which side the minus sign is on.)

$$
\underbrace{\frac{1}{X} \frac{d^{2} X}{d x^{2}}}_{\text {function of } x}=\underbrace{-\frac{1}{Y} \frac{d^{2} Y}{d y^{2}}}_{\text {function of } y}
$$

The only way a function of x can be equal to a function of y is if both are equal to a constant λ.

$$
\frac{1}{X} \frac{d^{2} X}{d x^{2}}=-\frac{1}{Y} \frac{d^{2} Y}{d y^{2}}=\lambda
$$

As a result of applying the method of separation of variables, the PDE has reduced to two ODEs - one in x and one in y.

$$
\left.\begin{array}{rl}
\frac{1}{X} \frac{d^{2} X}{d x^{2}} & =\lambda \\
-\frac{1}{Y} \frac{d^{2} Y}{d y^{2}} & =\lambda
\end{array}\right\}
$$

Values of λ for which nontrivial solutions of these equations exist are called the eigenvalues, and the solutions themselves are known as the eigenfunctions. We will solve the ODE for Y first since there are two boundary conditions for it. Suppose first that λ is positive: $\lambda=\alpha^{2}$. The ODE for Y becomes

$$
Y^{\prime \prime}=-\alpha^{2} Y
$$

The general solution is written in terms of sine and cosine.

$$
Y(y)=C_{1} \cos \alpha y+C_{2} \sin \alpha y
$$

Apply the boundary conditions to determine C_{1} and C_{2}.

$$
\begin{aligned}
Y(0) & =C_{1}=0 \\
Y(H) & =C_{1} \cos \alpha H+C_{2} \sin \alpha H=0
\end{aligned}
$$

The second equation reduces to $C_{2} \sin \alpha H=0$. To avoid getting the trivial solution, we insist that $C_{2} \neq 0$. Then

$$
\begin{aligned}
\sin \alpha H & =0 \\
\alpha H & =n \pi, \quad n=1,2, \ldots \\
\alpha_{n} & =\frac{n \pi}{H} .
\end{aligned}
$$

There are positive eigenvalues $\lambda=n^{2} \pi^{2} / H^{2}$, and the eigenfunctions associated with them are

$$
\begin{aligned}
Y(y) & =C_{1} \cos \alpha y+C_{2} \sin \alpha y \\
& =C_{2} \sin \alpha y \quad \rightarrow \quad Y_{n}(y)=\sin \frac{n \pi y}{H} .
\end{aligned}
$$

With this formula for λ, the ODE for X becomes

$$
\frac{d^{2} X}{d x^{2}}=\frac{n^{2} \pi^{2}}{H^{2}} X
$$

The general solution is written in terms of hyperbolic sine and hyperbolic cosine.

$$
X(x)=C_{3} \cosh \frac{n \pi x}{H}+C_{4} \sinh \frac{n \pi x}{H}
$$

Take a derivative of it.

$$
X^{\prime}(x)=\frac{n \pi}{H}\left(C_{3} \sinh \frac{n \pi x}{H}+C_{4} \cosh \frac{n \pi x}{H}\right)
$$

Apply the boundary condition to determine one of the constants.

$$
X^{\prime}(L)=\frac{n \pi}{H}\left(C_{3} \sinh \frac{n \pi L}{H}+C_{4} \cosh \frac{n \pi L}{H}\right)=0 \quad \rightarrow \quad C_{4}=-C_{3} \frac{\sinh \frac{n \pi L}{H}}{\cosh \frac{n \pi L}{H}}
$$

So then

$$
\begin{aligned}
X(x) & =C_{3} \cosh \frac{n \pi x}{H}-C_{3} \frac{\sinh \frac{n \pi L}{H}}{\cosh \frac{n \pi L}{H}} \sinh \frac{n \pi x}{H} \\
& =\frac{C_{3}}{\cosh \frac{n \pi L}{H}}\left(\cosh \frac{n \pi x}{H} \cosh \frac{n \pi L}{H}-\sinh \frac{n \pi L}{H} \sinh \frac{n \pi x}{H}\right) \\
& =\frac{C_{3}}{\cosh \frac{n \pi L}{H}} \cosh \left[\frac{n \pi}{H}(x-L)\right] \quad \rightarrow \quad X_{n}(x)=\cosh \left[\frac{n \pi}{H}(x-L)\right] .
\end{aligned}
$$

Suppose secondly that λ is zero: $\lambda=0$. The ODE for Y becomes

$$
Y^{\prime \prime}=0 .
$$

Integrate both sides with respect to y twice.

$$
Y(y)=C_{5} y+C_{6}
$$

Apply the boundary conditions to determine C_{5} and C_{6}.

$$
\begin{aligned}
Y(0) & =C_{6}=0 \\
Y(H) & =C_{5} H+C_{6}=0
\end{aligned}
$$

The second equation reduces to $C_{5} H=0$, which means $C_{5}=0$. The trivial solution $Y(y)=0$ is obtained, so zero is not an eigenvalue. Suppose thirdly that λ is negative: $\lambda=-\beta^{2}$. The ODE for Y becomes

$$
Y^{\prime \prime}=\beta^{2} Y
$$

The general solution is written in terms of hyperbolic sine and hyperbolic cosine.

$$
Y(y)=C_{7} \cosh \beta y+C_{8} \sinh \beta y
$$

Apply the boundary conditions to determine C_{7} and C_{8}.

$$
\begin{aligned}
Y(0) & =C_{7}=0 \\
Y(H) & =C_{7} \cosh \beta H+C_{8} \sinh \beta H=0
\end{aligned}
$$

The second equation reduces to $C_{8} \sinh \beta H=0$. No nonzero value of β can satisfy this equation, so C_{8} must be zero. The trivial solution $Y(y)=0$ is obtained, which means there are no negative eigenvalues. According to the principle of superposition, the general solution to the PDE for u is a linear combination of $X(x) Y(y)$ over all the eigenvalues.

$$
u(x, y)=\sum_{n=1}^{\infty} B_{n} \cosh \left[\frac{n \pi}{H}(x-L)\right] \sin \frac{n \pi y}{H}
$$

Use the remaining inhomogeneous boundary condition $\frac{\partial u}{\partial x}(0, y)=g(y)$ to determine B_{n}. Take a derivative of the general solution with respect to x.

$$
\frac{\partial u}{\partial x}=\sum_{n=1}^{\infty} B_{n} \frac{n \pi}{H} \sinh \left[\frac{n \pi}{H}(x-L)\right] \sin \frac{n \pi y}{H}
$$

Apply the boundary condition.

$$
\begin{gathered}
\frac{\partial u}{\partial x}(0, y)=\sum_{n=1}^{\infty} B_{n} \frac{n \pi}{H} \sinh \left[\frac{n \pi}{H}(-L)\right] \sin \frac{n \pi y}{H}=g(y) \\
\sum_{n=1}^{\infty}\left(-B_{n} \frac{n \pi}{H} \sinh \frac{n \pi L}{H}\right) \sin \frac{n \pi y}{H}=g(y)
\end{gathered}
$$

To find B_{n}, multiply both sides by $\sin (m \pi y / H)$, where m is an integer,

$$
\sum_{n=1}^{\infty}\left(-B_{n} \frac{n \pi}{H} \sinh \frac{n \pi L}{H}\right) \sin \frac{n \pi y}{H} \sin \frac{m \pi y}{H}=g(y) \sin \frac{m \pi y}{H}
$$

and then integrate both sides with respect to y from 0 to H.

$$
\int_{0}^{H} \sum_{n=1}^{\infty}\left(-B_{n} \frac{n \pi}{H} \sinh \frac{n \pi L}{H}\right) \sin \frac{n \pi y}{H} \sin \frac{m \pi y}{H} d y=\int_{0}^{H} g(y) \sin \frac{m \pi y}{H} d y
$$

Bring the constants in front of the integral on the left.

$$
\sum_{n=1}^{\infty}\left(-B_{n} \frac{n \pi}{H} \sinh \frac{n \pi L}{H}\right) \int_{0}^{H} \sin \frac{n \pi y}{H} \sin \frac{m \pi y}{H} d y=\int_{0}^{H} g(y) \sin \frac{m \pi y}{H} d y
$$

Because the sine functions are orthogonal, the integral on the left is zero if $n \neq m$. As a result, every term in the infinite series vanishes except for the one where $n=m$.

$$
\begin{gathered}
\left(-B_{n} \frac{n \pi}{H} \sinh \frac{n \pi L}{H}\right) \int_{0}^{H} \sin ^{2} \frac{n \pi y}{H} d y=\int_{0}^{H} g(y) \sin \frac{n \pi y}{H} d y \\
\left(-B_{n} \frac{n \pi}{H} \sinh \frac{n \pi L}{H}\right)\left(\frac{H}{2}\right)=\int_{0}^{H} g(y) \sin \frac{n \pi y}{H} d y
\end{gathered}
$$

So then

$$
B_{n}=-\frac{2}{n \pi \sinh \frac{n \pi L}{H}} \int_{0}^{H} g(y) \sin \frac{n \pi y}{H} d y .
$$

Part (c)

$$
\begin{aligned}
& \nabla^{2} u=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0, \quad 0 \leq x \leq L, 0 \leq y \leq H \\
& \frac{\partial u}{\partial x}(0, y)=0 \\
& u(L, y)=g(y) \\
& u(x, 0)=0 \\
& u(x, H)=0
\end{aligned}
$$

Because Laplace's equation and all but one of the boundary conditions are linear and homogeneous, the method of separation of variables can be applied. Assume a product solution of the form $u(x, y)=X(x) Y(y)$ and substitute it into the PDE

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0 \quad \rightarrow \quad \frac{\partial^{2}}{\partial x^{2}}[X(x) Y(y)]+\frac{\partial^{2}}{\partial y^{2}}[X(x) Y(y)]=0
$$

and the homogeneous boundary conditions.

$$
\begin{array}{lllll}
\frac{\partial u}{\partial x}(0, y)=0 & \rightarrow & X^{\prime}(0) Y(y)=0 & \rightarrow & X^{\prime}(0)=0 \\
u(x, 0)=0 & \rightarrow & X(x) Y(0)=0 & \rightarrow & Y(0)=0 \\
u(x, H)=0 & \rightarrow & X(x) Y(H)=0 & \rightarrow & Y(H)=0
\end{array}
$$

Separate variables in the PDE.

$$
Y \frac{d^{2} X}{d x^{2}}+X \frac{d^{2} Y}{d y^{2}}=0
$$

Divide both sides by $X(x) Y(y)$.

$$
\frac{1}{X} \frac{d^{2} X}{d x^{2}}+\frac{1}{Y} \frac{d^{2} Y}{d y^{2}}=0
$$

Bring the second term to the right side. (Note that the final answer will be the same regardless of which side the minus sign is on.)

$$
\underbrace{\frac{1}{X} \frac{d^{2} X}{d x^{2}}}_{\text {function of } x}=\underbrace{-\frac{1}{Y} \frac{d^{2} Y}{d y^{2}}}_{\text {function of } y}
$$

The only way a function of x can be equal to a function of y is if both are equal to a constant λ.

$$
\frac{1}{X} \frac{d^{2} X}{d x^{2}}=-\frac{1}{Y} \frac{d^{2} Y}{d y^{2}}=\lambda
$$

As a result of applying the method of separation of variables, the PDE has reduced to two ODEs - one in x and one in y.

$$
\left.\begin{array}{r}
\frac{1}{X} \frac{d^{2} X}{d x^{2}}=\lambda \\
-\frac{1}{Y} \frac{d^{2} Y}{d y^{2}}=\lambda
\end{array}\right\}
$$

Values of λ for which nontrivial solutions of these equations exist are called the eigenvalues, and the solutions themselves are known as the eigenfunctions. We will solve the ODE for Y first since there are two boundary conditions for it. Suppose first that λ is positive: $\lambda=\alpha^{2}$. The ODE for Y becomes

$$
Y^{\prime \prime}=-\alpha^{2} Y
$$

The general solution is written in terms of sine and cosine.

$$
Y(y)=C_{1} \cos \alpha y+C_{2} \sin \alpha y
$$

Apply the boundary conditions to determine C_{1} and C_{2}.

$$
\begin{aligned}
Y(0) & =C_{1}=0 \\
Y(H) & =C_{1} \cos \alpha H+C_{2} \sin \alpha H=0
\end{aligned}
$$

The second equation reduces to $C_{2} \sin \alpha H=0$. To avoid getting the trivial solution, we insist that $C_{2} \neq 0$. Then

$$
\begin{aligned}
\sin \alpha H & =0 \\
\alpha H & =n \pi, \quad n=1,2, \ldots \\
\alpha_{n} & =\frac{n \pi}{H} .
\end{aligned}
$$

There are positive eigenvalues $\lambda=n^{2} \pi^{2} / H^{2}$, and the eigenfunctions associated with them are

$$
\begin{aligned}
Y(y) & =C_{1} \cos \alpha y+C_{2} \sin \alpha y \\
& =C_{2} \sin \alpha y \quad \rightarrow \quad Y_{n}(y)=\sin \frac{n \pi y}{H} .
\end{aligned}
$$

With this formula for λ, the ODE for X becomes

$$
\frac{d^{2} X}{d x^{2}}=\frac{n^{2} \pi^{2}}{H^{2}} X
$$

The general solution is written in terms of hyperbolic sine and hyperbolic cosine.

$$
X(x)=C_{3} \cosh \frac{n \pi x}{H}+C_{4} \sinh \frac{n \pi x}{H}
$$

Take a derivative of it.

$$
X^{\prime}(x)=\frac{n \pi}{H}\left(C_{3} \sinh \frac{n \pi x}{H}+C_{4} \cosh \frac{n \pi x}{H}\right)
$$

Apply the boundary condition to determine one of the constants.

$$
X^{\prime}(0)=\frac{n \pi}{H}\left(C_{4}\right)=0 \quad \rightarrow \quad C_{4}=0
$$

So then

$$
X(x)=C_{3} \cosh \frac{n \pi x}{H} \quad \rightarrow \quad X_{n}(x)=\cosh \frac{n \pi x}{H} .
$$

Suppose secondly that λ is zero: $\lambda=0$. The ODE for Y becomes

$$
Y^{\prime \prime}=0 .
$$

Integrate both sides with respect to y twice.

$$
Y(y)=C_{5} y+C_{6}
$$

Apply the boundary conditions to determine C_{5} and C_{6}.

$$
\begin{aligned}
Y(0) & =C_{6}=0 \\
Y(H) & =C_{5} H+C_{6}=0
\end{aligned}
$$

The second equation reduces to $C_{5} H=0$, which means $C_{5}=0$. The trivial solution $Y(y)=0$ is obtained, so zero is not an eigenvalue. Suppose thirdly that λ is negative: $\lambda=-\beta^{2}$. The ODE for Y becomes

$$
Y^{\prime \prime}=\beta^{2} Y
$$

The general solution is written in terms of hyperbolic sine and hyperbolic cosine.

$$
Y(y)=C_{7} \cosh \beta y+C_{8} \sinh \beta y
$$

Apply the boundary conditions to determine C_{7} and C_{8}.

$$
\begin{aligned}
Y(0) & =C_{7}=0 \\
Y(H) & =C_{7} \cosh \beta H+C_{8} \sinh \beta H=0
\end{aligned}
$$

The second equation reduces to $C_{8} \sinh \beta H=0$. No nonzero value of β can satisfy this equation, so C_{8} must be zero. The trivial solution $Y(y)=0$ is obtained, which means there are no negative eigenvalues. According to the principle of superposition, the general solution to the PDE for u is a linear combination of $X(x) Y(y)$ over all the eigenvalues.

$$
u(x, y)=\sum_{n=1}^{\infty} B_{n} \cosh \frac{n \pi x}{H} \sin \frac{n \pi y}{H}
$$

Use the remaining inhomogeneous boundary condition $u(L, y)=g(y)$ to determine B_{n}.

$$
u(L, y)=\sum_{n=1}^{\infty} B_{n} \cosh \frac{n \pi L}{H} \sin \frac{n \pi y}{H}=g(y)
$$

Multiply both sides by $\sin (m \pi y / H)$, where m is an integer,

$$
\sum_{n=1}^{\infty} B_{n} \cosh \frac{n \pi L}{H} \sin \frac{n \pi y}{H} \sin \frac{m \pi y}{H}=g(y) \sin \frac{m \pi y}{H}
$$

and then integrate both sides with respect to y from 0 to H.

$$
\int_{0}^{H} \sum_{n=1}^{\infty} B_{n} \cosh \frac{n \pi L}{H} \sin \frac{n \pi y}{H} \sin \frac{m \pi y}{H} d y=\int_{0}^{H} g(y) \sin \frac{m \pi y}{H} d y
$$

Bring the constants in front of the integral on the left.

$$
\sum_{n=1}^{\infty} B_{n} \cosh \frac{n \pi L}{H} \int_{0}^{H} \sin \frac{n \pi y}{H} \sin \frac{m \pi y}{H} d y=\int_{0}^{H} g(y) \sin \frac{m \pi y}{H} d y
$$

Because the sine functions are orthogonal, the integral on the left is zero if $n \neq m$. As a result, every term in the infinite series vanishes except for the $n=m$ one.

$$
\begin{gathered}
B_{n} \cosh \frac{n \pi L}{H} \int_{0}^{H} \sin ^{2} \frac{n \pi y}{H} d y=\int_{0}^{H} g(y) \sin \frac{n \pi y}{H} d y \\
B_{n} \cosh \frac{n \pi L}{H}\left(\frac{H}{2}\right)=\int_{0}^{H} g(y) \sin \frac{n \pi y}{H} d y
\end{gathered}
$$

So then

$$
B_{n}=\frac{2}{H \cosh \frac{n \pi L}{H}} \int_{0}^{H} g(y) \sin \frac{n \pi y}{H} d y .
$$

Part (d)

$$
\begin{aligned}
& \nabla^{2} u=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0, \quad 0 \leq x \leq L, 0 \leq y \leq H \\
& u(0, y)=g(y) \\
& u(L, y)=0 \\
& \frac{\partial u}{\partial y}(x, 0)=0 \\
& u(x, H)=0
\end{aligned}
$$

Because Laplace's equation and all but one of the boundary conditions are linear and homogeneous, the method of separation of variables can be applied. Assume a product solution of the form $u(x, y)=X(x) Y(y)$ and substitute it into the PDE

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0 \quad \rightarrow \quad \frac{\partial^{2}}{\partial x^{2}}[X(x) Y(y)]+\frac{\partial^{2}}{\partial y^{2}}[X(x) Y(y)]=0
$$

and the homogeneous boundary conditions.

$$
\begin{array}{lllll}
u(L, y)=0 & \rightarrow & X(L) Y(y)=0 & \rightarrow & X(L)=0 \\
\frac{\partial u}{\partial y}(x, 0)=0 & \rightarrow & X(x) Y^{\prime}(0)=0 & \rightarrow & Y^{\prime}(0)=0 \\
u(x, H)=0 & \rightarrow & X(x) Y(H)=0 & \rightarrow & Y(H)=0
\end{array}
$$

Separate variables in the PDE.

$$
Y \frac{d^{2} X}{d x^{2}}+X \frac{d^{2} Y}{d y^{2}}=0
$$

Divide both sides by $X(x) Y(y)$.

$$
\frac{1}{X} \frac{d^{2} X}{d x^{2}}+\frac{1}{Y} \frac{d^{2} Y}{d y^{2}}=0
$$

Bring the second term to the right side. (Note that the final answer will be the same regardless of which side the minus sign is on.)

$$
\underbrace{\frac{1}{X} \frac{d^{2} X}{d x^{2}}}_{\text {function of } x}=\underbrace{-\frac{1}{Y} \frac{d^{2} Y}{d y^{2}}}_{\text {function of } y}
$$

The only way a function of x can be equal to a function of y is if both are equal to a constant λ.

$$
\frac{1}{X} \frac{d^{2} X}{d x^{2}}=-\frac{1}{Y} \frac{d^{2} Y}{d y^{2}}=\lambda
$$

As a result of applying the method of separation of variables, the PDE has reduced to two ODEs - one in x and one in y.

$$
\left.\begin{array}{rl}
\frac{1}{X} \frac{d^{2} X}{d x^{2}} & =\lambda \\
-\frac{1}{Y} \frac{d^{2} Y}{d y^{2}} & =\lambda
\end{array}\right\}
$$

Values of λ for which nontrivial solutions of these equations exist are called eigenvalues, and the solutions themselves are known as eigenfunctions. We will solve the ODE for Y first since there are two boundary conditions for it. Suppose first that λ is positive: $\lambda=\alpha^{2}$. The ODE for Y becomes

$$
Y^{\prime \prime}=-\alpha^{2} Y
$$

The general solution is written in terms of sine and cosine.

$$
Y(y)=C_{1} \cos \alpha y+C_{2} \sin \alpha y
$$

Take a derivative of it.

$$
Y^{\prime}(y)=\alpha\left(-C_{1} \sin \alpha y+C_{2} \cos \alpha y\right)
$$

Apply the boundary conditions to determine C_{1} and C_{2}.

$$
\begin{aligned}
Y^{\prime}(0) & =\alpha\left(C_{2}\right)=0 \\
Y(H) & =C_{1} \cos \alpha H+C_{2} \sin \alpha H=0
\end{aligned}
$$

The first equation implies that $C_{2}=0$, so the second one reduces to $C_{1} \cos \alpha H=0$. To avoid getting the trivial solution, we insist that $C_{1} \neq 0$. Then

$$
\begin{aligned}
\cos \alpha H & =0 \\
\alpha H & =\frac{1}{2}(2 n-1) \pi, \quad n=1,2, \ldots \\
\alpha_{n} & =\frac{1}{2 H}(2 n-1) \pi
\end{aligned}
$$

There are positive eigenvalues $\lambda=(2 n-1)^{2} \pi^{2} /\left(4 H^{2}\right)$, and the eigenfunctions associated with them are

$$
\begin{aligned}
Y(y) & =C_{1} \cos \alpha y+C_{2} \sin \alpha y \\
& =C_{1} \cos \alpha y \quad \rightarrow \quad Y_{n}(y)=\cos \frac{(2 n-1) \pi y}{2 H} .
\end{aligned}
$$

With this formula for λ, the ODE for X becomes

$$
\frac{d^{2} X}{d x^{2}}=\frac{(2 n-1)^{2} \pi^{2}}{4 H^{2}} X
$$

The general solution is written in terms of hyperbolic sine and hyperbolic cosine.

$$
X(x)=C_{3} \cosh \frac{(2 n-1) \pi x}{2 H}+C_{4} \sinh \frac{(2 n-1) \pi x}{2 H}
$$

Apply the boundary condition to determine one of the constants.

$$
X(L)=C_{3} \cosh \frac{(2 n-1) \pi L}{2 H}+C_{4} \sinh \frac{(2 n-1) \pi L}{2 H}=0 \quad \rightarrow \quad C_{3}=-C_{4} \frac{\sinh \frac{(2 n-1) \pi L}{2 H}}{\cosh \frac{(2 n-1) \pi L}{2 H}}
$$

So then

$$
\begin{aligned}
X(x) & =C_{3} \cosh \frac{(2 n-1) \pi x}{2 H}+C_{4} \sinh \frac{(2 n-1) \pi x}{2 H} \\
& =-C_{4} \frac{\sinh \frac{(2 n-1) \pi L}{2 H}}{\cosh \frac{(2 n-1) \pi L}{2 H}} \cosh \frac{(2 n-1) \pi x}{2 H}+C_{4} \sinh \frac{(2 n-1) \pi x}{2 H} \\
& =-\frac{C_{4}}{\cosh \frac{(2 n-1) \pi L}{2 H}}\left[\sinh \frac{(2 n-1) \pi L}{2 H} \cosh \frac{(2 n-1) \pi x}{2 H}-\cosh \frac{(2 n-1) \pi L}{2 H} \sinh \frac{(2 n-1) \pi x}{2 H}\right] \\
& =-\frac{C_{4}}{\cosh \frac{(2 n-1) \pi L}{2 H}} \sinh \frac{(2 n-1) \pi(L-x)}{2 H} \quad \rightarrow \quad X_{n}(x)=\sinh \frac{(2 n-1) \pi(L-x)}{2 H} .
\end{aligned}
$$

Suppose secondly that λ is zero: $\lambda=0$. The ODE for Y becomes

$$
Y^{\prime \prime}=0 .
$$

Integrate both sides with respect to y.

$$
Y^{\prime}=C_{5}
$$

Apply the first boundary condition to determine C_{5}.

$$
Y^{\prime}(0)=C_{5}=0
$$

Consequently,

$$
Y^{\prime}=0 .
$$

Integrate both sides with respect to y once more.

$$
Y(y)=C_{6}
$$

Apply the second boundary condition to determine C_{6}.

$$
Y(H)=C_{6}=0
$$

The trivial solution $Y(y)=0$ is obtained, so zero is not an eigenvalue. Suppose thirdly that λ is negative: $\lambda=-\beta^{2}$. The ODE for Y becomes

$$
Y^{\prime \prime}=\beta^{2} Y .
$$

The general solution is written in terms of hyperbolic sine and hyperbolic cosine.

$$
Y(y)=C_{7} \cosh \beta y+C_{8} \sinh \beta y
$$

Take the derivative of it.

$$
Y^{\prime}(y)=\beta\left(C_{7} \sinh \beta y+C_{8} \cosh \beta y\right)
$$

Apply the boundary conditions to determine C_{7} and C_{8}.

$$
\begin{aligned}
Y^{\prime}(0) & =\beta\left(C_{8}\right)=0 \\
Y(H) & =C_{7} \cosh \beta H+C_{8} \sinh \beta H=0
\end{aligned}
$$

The first equation implies that $C_{8}=0$, so the second one reduces to $C_{7} \cosh \beta H=0$. No nonzero value of β can satisfy this equation, so C_{7} must be zero. The trivial solution $Y(y)=0$ is obtained,
which means there are no negative eigenvalues. According to the principle of superposition, the general solution to the PDE for u is a linear combination of $X(x) Y(y)$ over all the eigenvalues.

$$
u(x, y)=\sum_{n=1}^{\infty} A_{n} \sinh \frac{(2 n-1) \pi(L-x)}{2 H} \cos \frac{(2 n-1) \pi y}{2 H}
$$

Use the remaining inhomogeneous boundary condition $u(0, y)=g(y)$ to determine A_{n}.

$$
u(0, y)=\sum_{n=1}^{\infty} A_{n} \sinh \frac{(2 n-1) \pi L}{2 H} \cos \frac{(2 n-1) \pi y}{2 H}=g(y)
$$

Multiply both sides by $\cos [(2 m-1) \pi y /(2 H)]$

$$
\sum_{n=1}^{\infty} A_{n} \sinh \frac{(2 n-1) \pi L}{2 H} \cos \frac{(2 n-1) \pi y}{2 H} \cos \frac{(2 m-1) \pi y}{2 H}=g(y) \cos \frac{(2 m-1) \pi y}{2 H}
$$

and then integrate both sides with respect to y from 0 to H.

$$
\int_{0}^{H} \sum_{n=1}^{\infty} A_{n} \sinh \frac{(2 n-1) \pi L}{2 H} \cos \frac{(2 n-1) \pi y}{2 H} \cos \frac{(2 m-1) \pi y}{2 H} d y=\int_{0}^{H} g(y) \cos \frac{(2 m-1) \pi y}{2 H} d y
$$

Bring the constants in front of the integral on the left.

$$
\sum_{n=1}^{\infty} A_{n} \sinh \frac{(2 n-1) \pi L}{2 H} \int_{0}^{H} \cos \frac{(2 n-1) \pi y}{2 H} \cos \frac{(2 m-1) \pi y}{2 H} d y=\int_{0}^{H} g(y) \cos \frac{(2 m-1) \pi y}{2 H} d y
$$

Because the cosine functions are orthogonal, the integral on the left is zero if $n \neq m$. As a result, every term in the infinite series vanishes except for the $n=m$ term.

$$
\begin{gathered}
A_{n} \sinh \frac{(2 n-1) \pi L}{2 H} \int_{0}^{H} \cos ^{2} \frac{(2 n-1) \pi y}{2 H} d y=\int_{0}^{H} g(y) \cos \frac{(2 n-1) \pi y}{2 H} d y \\
A_{n} \sinh \frac{(2 n-1) \pi L}{2 H}\left(\frac{H}{2}\right)=\int_{0}^{H} g(y) \cos \frac{(2 n-1) \pi y}{2 H} d y
\end{gathered}
$$

So then

$$
A_{n}=\frac{2}{H \sinh \frac{(2 n-1) \pi L}{2 H}} \int_{0}^{H} g(y) \cos \frac{(2 n-1) \pi y}{2 H} d y
$$

Part (e)

$$
\begin{aligned}
& \nabla^{2} u=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0, \quad 0 \leq x \leq L, 0 \leq y \leq H \\
& u(0, y)=0 \\
& u(L, y)=0 \\
& u(x, 0)-\frac{\partial u}{\partial y}(x, 0)=0 \\
& u(x, H)=f(x)
\end{aligned}
$$

Because Laplace's equation and all but one of the boundary conditions are linear and homogeneous, the method of separation of variables can be applied. Assume a product solution of the form $u(x, y)=X(x) Y(y)$ and substitute it into the PDE

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0 \quad \rightarrow \quad \frac{\partial^{2}}{\partial x^{2}}[X(x) Y(y)]+\frac{\partial^{2}}{\partial y^{2}}[X(x) Y(y)]=0
$$

and the homogeneous boundary conditions.

$$
\begin{aligned}
& u(0, y)=0 \quad \rightarrow \quad X(0) Y(y)=0 \quad \rightarrow \quad X(0)=0 \\
& u(L, y)=0 \quad \rightarrow \quad X(L) Y(y)=0 \quad \rightarrow \quad X(L)=0 \\
& u(x, 0)-\frac{\partial u}{\partial y}(x, 0)=0 \quad \rightarrow \quad X(x) Y(0)-X(x) Y^{\prime}(0)=0 \quad \rightarrow \quad Y(0)-Y^{\prime}(0)=0
\end{aligned}
$$

Separate variables in the PDE.

$$
Y \frac{d^{2} X}{d x^{2}}+X \frac{d^{2} Y}{d y^{2}}=0
$$

Divide both sides by $X(x) Y(y)$.

$$
\frac{1}{X} \frac{d^{2} X}{d x^{2}}+\frac{1}{Y} \frac{d^{2} Y}{d y^{2}}=0
$$

Bring the second term to the right side. (Note that the final answer will be the same regardless of which side the minus sign is on.)

$$
\underbrace{\frac{1}{X} \frac{d^{2} X}{d x^{2}}}_{\text {function of } x}=\underbrace{-\frac{1}{Y} \frac{d^{2} Y}{d y^{2}}}_{\text {function of } y}
$$

The only way a function of x can be equal to a function of y is if both are equal to a constant λ.

$$
\frac{1}{X} \frac{d^{2} X}{d x^{2}}=-\frac{1}{Y} \frac{d^{2} Y}{d y^{2}}=\lambda
$$

As a result of applying the method of separation of variables, the PDE has reduced to two ODEs - one in x and one in y.

$$
\left.\begin{array}{rl}
\frac{1}{X} \frac{d^{2} X}{d x^{2}} & =\lambda \\
-\frac{1}{Y} \frac{d^{2} Y}{d y^{2}} & =\lambda
\end{array}\right\}
$$

Values of λ for which nontrivial solutions of these equations exist are called the eigenvalues, and the solutions themselves are known as the eigenfunctions. We will solve the ODE for X first since there are two boundary conditions for it. Suppose first that λ is positive: $\lambda=\alpha^{2}$. The ODE for X becomes

$$
X^{\prime \prime}=\alpha^{2} X
$$

The general solution is written in terms of hyperbolic sine and hyperbolic cosine.

$$
X(x)=C_{1} \cosh \alpha x+C_{2} \sinh \alpha x
$$

Apply the boundary conditions to determine C_{1} and C_{2}.

$$
\begin{aligned}
& X(0)=C_{1}=0 \\
& X(L)=C_{1} \cosh \alpha L+C_{2} \sinh \alpha L=0
\end{aligned}
$$

The second equation reduces to $C_{2} \sinh \alpha L=0$. No nonzero value of α satisfies this equation, so C_{2} must be zero. The trivial solution is obtained, so there are no positive eigenvalues. Suppose secondly that λ is zero: $\lambda=0$. The ODE for X becomes

$$
X^{\prime \prime}=0
$$

Integrate both sides with respect to x twice.

$$
X(x)=C_{3} x+C_{4}
$$

Apply the boundary conditions to determine C_{3}.

$$
\begin{aligned}
& X(0)=C_{4}=0 \\
& X(L)=C_{3} L+C_{4}=0
\end{aligned}
$$

The second equation reduces to $C_{3} L=0$, so $C_{3}=0$. The trivial solution $X(x)=0$ is obtained, which means zero is not an eigenvalue. Suppose thirdly that λ is negative: $\lambda=-\beta^{2}$. The ODE for X becomes

$$
X^{\prime \prime}=-\beta^{2} X
$$

The general solution is written in terms of sine and cosine.

$$
X(x)=C_{7} \cos \beta x+C_{8} \sin \beta x
$$

Apply the boundary conditions to determine C_{7} and C_{8}.

$$
\begin{aligned}
& X(0)=C_{7}=0 \\
& X(L)=C_{7} \cos \beta L+C_{8} \sin \beta L=0
\end{aligned}
$$

The second equation reduces to $C_{8} \sin \beta L=0$. To avoid getting the trivial solution, we insist that $C_{8} \neq 0$. Then

$$
\begin{aligned}
\sin \beta L & =0 \\
\beta L & =n \pi, \quad n=1,2, \ldots \\
\beta_{n} & =\frac{n \pi}{L} .
\end{aligned}
$$

There are negative eigenvalues $\lambda=-n^{2} \pi^{2} / L^{2}$, and the eigenfunctions associated with them are

$$
\begin{aligned}
X(x) & =C_{7} \cos \beta x+C_{8} \sin \beta x \\
& =C_{8} \sin \beta x \quad \rightarrow \quad X_{n}(x)=\sin \frac{n \pi x}{L} .
\end{aligned}
$$

With this formula for λ, solve the ODE for Y now.

$$
\frac{d^{2} Y}{d y^{2}}=\frac{n^{2} \pi^{2}}{L^{2}} Y
$$

The general solution is written in terms of hyperbolic sine and hyperbolic cosine.

$$
Y(y)=C_{9} \cosh \frac{n \pi y}{L}+C_{10} \sinh \frac{n \pi y}{L}
$$

Take a derivative of it.

$$
Y^{\prime}(y)=\frac{n \pi}{L}\left(C_{9} \sinh \frac{n \pi y}{L}+C_{10} \cosh \frac{n \pi y}{L}\right)
$$

Use the boundary condition to determine one of the constants.

$$
Y(0)-Y^{\prime}(0)=C_{9}-\frac{n \pi}{L}\left(C_{10}\right)=0 \quad \rightarrow \quad C_{9}=\frac{n \pi}{L} C_{10}
$$

So then

$$
\begin{aligned}
Y(y) & =C_{9} \cosh \frac{n \pi y}{L}+C_{10} \sinh \frac{n \pi y}{L} \\
& =\frac{n \pi}{L} C_{10} \cosh \frac{n \pi y}{L}+C_{10} \sinh \frac{n \pi y}{L} \\
& =C_{10}\left(\sinh \frac{n \pi y}{L}+\frac{n \pi}{L} \cosh \frac{n \pi y}{L}\right) \quad \rightarrow \quad Y_{n}(y)=\sinh \frac{n \pi y}{L}+\frac{n \pi}{L} \cosh \frac{n \pi y}{L} .
\end{aligned}
$$

According to the principle of superposition, the general solution to the PDE for u is a linear combination of $X(x) Y(y)$ over all the eigenvalues.

$$
u(x, y)=\sum_{n=1}^{\infty} B_{n} \sin \frac{n \pi x}{L}\left(\sinh \frac{n \pi y}{L}+\frac{n \pi}{L} \cosh \frac{n \pi y}{L}\right)
$$

Use the final inhomogeneous boundary condition $u(x, H)=f(x)$ to determine B_{n}.

$$
u(x, H)=\sum_{n=1}^{\infty} B_{n}\left(\sinh \frac{n \pi H}{L}+\frac{n \pi}{L} \cosh \frac{n \pi H}{L}\right) \sin \frac{n \pi x}{L}=f(x)
$$

Multiply both sides by $\sin (m \pi x / L)$, where m is an integer,

$$
\sum_{n=1}^{\infty} B_{n}\left(\sinh \frac{n \pi H}{L}+\frac{n \pi}{L} \cosh \frac{n \pi H}{L}\right) \sin \frac{n \pi x}{L} \sin \frac{m \pi x}{L}=f(x) \sin \frac{m \pi x}{L}
$$

and then integrate both sides with respect to x from 0 to L.

$$
\int_{0}^{L} \sum_{n=1}^{\infty} B_{n}\left(\sinh \frac{n \pi H}{L}+\frac{n \pi}{L} \cosh \frac{n \pi H}{L}\right) \sin \frac{n \pi x}{L} \sin \frac{m \pi x}{L} d x=\int_{0}^{L} f(x) \sin \frac{m \pi x}{L} d x
$$

Bring the constants in front of the integral on the left.

$$
\sum_{n=1}^{\infty} B_{n}\left(\sinh \frac{n \pi H}{L}+\frac{n \pi}{L} \cosh \frac{n \pi H}{L}\right) \int_{0}^{L} \sin \frac{n \pi x}{L} \sin \frac{m \pi x}{L} d x=\int_{0}^{L} f(x) \sin \frac{m \pi x}{L} d x
$$

Because the sine functions are orthogonal, the integral on the left is zero if $n \neq m$. As a result, every term in the infinite series vanishes except for the $n=m$ one.

$$
\begin{gathered}
B_{n}\left(\sinh \frac{n \pi H}{L}+\frac{n \pi}{L} \cosh \frac{n \pi H}{L}\right) \int_{0}^{L} \sin ^{2} \frac{n \pi x}{L} d x=\int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x \\
B_{n}\left(\sinh \frac{n \pi H}{L}+\frac{n \pi}{L} \cosh \frac{n \pi H}{L}\right)\left(\frac{L}{2}\right)=\int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x
\end{gathered}
$$

So then

$$
B_{n}=\frac{2}{L\left(\sinh \frac{n \pi H}{L}+\frac{n \pi}{L} \cosh \frac{n \pi H}{L}\right)} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x .
$$

$\underline{\text { Part (f) }}$

$$
\begin{aligned}
& \nabla^{2} u=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0, \quad 0 \leq x \leq L, 0 \leq y \leq H \\
& u(0, y)=f(y) \\
& u(L, y)=0 \\
& \frac{\partial u}{\partial y}(x, 0)=0 \\
& \frac{\partial u}{\partial y}(x, H)=0
\end{aligned}
$$

Because Laplace's equation and all but one of the boundary conditions are linear and homogeneous, the method of separation of variables can be applied. Assume a product solution of the form $u(x, y)=X(x) Y(y)$ and substitute it into the PDE

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0 \quad \rightarrow \quad \frac{\partial^{2}}{\partial x^{2}}[X(x) Y(y)]+\frac{\partial^{2}}{\partial y^{2}}[X(x) Y(y)]=0
$$

and the homogeneous boundary conditions.

$$
\begin{array}{lllll}
u(L, y)=0 & \rightarrow & X(L) Y(y)=0 & \rightarrow & X(L)=0 \\
\frac{\partial u}{\partial y}(x, 0)=0 & \rightarrow & X(x) Y^{\prime}(0)=0 & \rightarrow & Y^{\prime}(0)=0 \\
\frac{\partial u}{\partial y}(x, H)=0 & \rightarrow & X(x) Y^{\prime}(H)=0 & \rightarrow & Y^{\prime}(H)=0
\end{array}
$$

Separate variables in the PDE.

$$
Y \frac{d^{2} X}{d x^{2}}+X \frac{d^{2} Y}{d y^{2}}=0
$$

Divide both sides by $X(x) Y(y)$.

$$
\frac{1}{X} \frac{d^{2} X}{d x^{2}}+\frac{1}{Y} \frac{d^{2} Y}{d y^{2}}=0
$$

Bring the second term to the right side. (Note that the final answer will be the same regardless of which side the minus sign is on.)

$$
\underbrace{\frac{1}{X} \frac{d^{2} X}{d x^{2}}}_{\text {function of } x}=\underbrace{-\frac{1}{Y} \frac{d^{2} Y}{d y^{2}}}_{\text {function of } y}
$$

The only way a function of x can be equal to a function of y is if both are equal to a constant λ.

$$
\frac{1}{X} \frac{d^{2} X}{d x^{2}}=-\frac{1}{Y} \frac{d^{2} Y}{d y^{2}}=\lambda
$$

As a result of applying the method of separation of variables, the PDE has reduced to two ODEs - one in x and one in y.

$$
\left.\begin{array}{rl}
\frac{1}{X} \frac{d^{2} X}{d x^{2}} & =\lambda \\
-\frac{1}{Y} \frac{d^{2} Y}{d y^{2}} & =\lambda
\end{array}\right\}
$$

Values of λ for which nontrivial solutions of these equations exist are called eigenvalues, and the solutions themselves are known as eigenfunctions. We will solve the ODE for Y first since there are two boundary conditions for it. Suppose first that λ is positive: $\lambda=\alpha^{2}$. The ODE for Y becomes

$$
Y^{\prime \prime}=-\alpha^{2} Y
$$

The general solution is written in terms of sine and cosine.

$$
Y(y)=C_{1} \cos \alpha y+C_{2} \sin \alpha y
$$

Take a derivative of it.

$$
Y^{\prime}(y)=\alpha\left(-C_{1} \sin \alpha y+C_{2} \cos \alpha y\right)
$$

Apply the boundary conditions to determine C_{1} and C_{2}.

$$
\begin{aligned}
Y^{\prime}(0) & =\alpha\left(C_{2}\right)=0 \\
Y^{\prime}(H) & =\alpha\left(-C_{1} \sin \alpha H+C_{2} \cos \alpha H\right)=0
\end{aligned}
$$

The first equation implies that $C_{2}=0$, so the second one reduces to $-C_{1} \alpha \sin \alpha H=0$. To avoid getting the trivial solution, we insist that $C_{1} \neq 0$. Then

$$
\begin{aligned}
-\alpha \sin \alpha H & =0 \\
\sin \alpha H & =0 \\
\alpha H & =n \pi, \quad n=1,2, \ldots \\
\alpha_{n} & =\frac{n \pi}{H} .
\end{aligned}
$$

There are positive eigenvalues $\lambda=n^{2} \pi^{2} / H^{2}$, and the eigenfunctions associated with them are

$$
\begin{aligned}
Y(y) & =C_{1} \cos \alpha y+C_{2} \sin \alpha y \\
& =C_{1} \cos \alpha y \quad \rightarrow \quad Y_{n}(y)=\cos \frac{n \pi y}{H} .
\end{aligned}
$$

With this formula for λ, the ODE for X becomes

$$
\frac{d^{2} X}{d x^{2}}=\frac{n^{2} \pi^{2}}{H^{2}} X
$$

The general solution is written in terms of hyperbolic sine and hyperbolic cosine.

$$
X(x)=C_{3} \cosh \frac{n \pi x}{H}+C_{4} \sinh \frac{n \pi x}{H}
$$

Apply the boundary condition to determine one of the constants.

$$
X(L)=C_{3} \cosh \frac{n \pi L}{H}+C_{4} \sinh \frac{n \pi L}{H}=0 \quad \rightarrow \quad C_{3}=-C_{4} \frac{\sinh \frac{n \pi L}{H}}{\cosh \frac{n \pi L}{H}}
$$

So then

$$
\begin{aligned}
X(x) & =C_{3} \cosh \frac{n \pi x}{H}+C_{4} \sinh \frac{n \pi x}{H} \\
& =-C_{4} \frac{\sinh \frac{n \pi L}{H}}{\cosh \frac{n \pi L}{H}} \cosh \frac{n \pi x}{H}+C_{4} \sinh \frac{n \pi x}{H} \\
& =-\frac{C_{4}}{\cosh \frac{n \pi L}{H}}\left(\sinh \frac{n \pi L}{H} \cosh \frac{n \pi x}{H}-\cosh \frac{n \pi L}{H} \sinh \frac{n \pi x}{H}\right) \\
& =-\frac{C_{4}}{\cosh \frac{n \pi L}{H}} \sinh \frac{n \pi(L-x)}{H} \rightarrow X_{n}(x)=\sinh \frac{n \pi(L-x)}{H} .
\end{aligned}
$$

Suppose secondly that λ is zero: $\lambda=0$. The ODE for Y becomes

$$
Y^{\prime \prime}=0 .
$$

Integrate both sides with respect to y.

$$
Y^{\prime}=C_{5}
$$

Apply the boundary conditions to determine C_{5}.

$$
\begin{aligned}
Y^{\prime}(0) & =C_{5}=0 \\
Y^{\prime}(H) & =C_{5}=0
\end{aligned}
$$

Consequently,

$$
Y^{\prime}=0 .
$$

Integrate both sides with respect to y once more.

$$
Y(y)=C_{6}
$$

Because $Y(y)$ is nonzero, zero is an eigenvalue; the eigenfunction associated with it is $Y_{0}(y)=1$. Now solve the ODE for X with $\lambda=0$.

$$
X^{\prime \prime}=0
$$

Integrate both sides with respect to x twice.

$$
X(x)=C_{7} x+C_{8}
$$

Apply the boundary condition to determine one of the constants.

$$
X(L)=C_{7} L+C_{8}=0 \quad \rightarrow \quad C_{8}=-C_{7} L
$$

Consequently,

$$
\begin{aligned}
X(x) & =C_{7} x+C_{8} \\
& =C_{7} x-C_{7} L \\
& =-C_{7}(L-x) \quad \rightarrow \quad X_{n}(x)=L-x .
\end{aligned}
$$

Suppose thirdly that λ is negative: $\lambda=-\beta^{2}$. The ODE for Y becomes

$$
Y^{\prime \prime}=\beta^{2} Y
$$

The general solution is written in terms of hyperbolic sine and hyperbolic cosine.

$$
Y(y)=C_{7} \cosh \beta y+C_{8} \sinh \beta y
$$

Take the derivative of it.

$$
Y^{\prime}(y)=\beta\left(C_{7} \sinh \beta y+C_{8} \cosh \beta y\right)
$$

Apply the boundary conditions to determine C_{7} and C_{8}.

$$
\begin{aligned}
Y^{\prime}(0) & =\beta\left(C_{8}\right)=0 \\
Y^{\prime}(H) & =\beta\left(C_{7} \sinh \beta H+C_{8} \cosh \beta H\right)=0
\end{aligned}
$$

The first equation implies that $C_{8}=0$, so the second one reduces to $C_{7} \beta \sinh \beta H=0$. No nonzero value of β can satisfy this equation, so C_{7} must be zero. The trivial solution $Y(y)=0$ is obtained, which means there are no negative eigenvalues. According to the principle of superposition, the general solution to the PDE for u is a linear combination of $X(x) Y(y)$ over all the eigenvalues.

$$
u(x, y)=A_{0}(L-x) \cdot 1+\sum_{n=1}^{\infty} A_{n} \sinh \frac{n \pi(L-x)}{H} \cos \frac{n \pi y}{H}
$$

Use the remaining inhomogeneous boundary condition $u(0, y)=f(y)$ to determine A_{0} and A_{n}.

$$
\begin{equation*}
u(0, y)=A_{0} L+\sum_{n=1}^{\infty} A_{n} \sinh \frac{n \pi L}{H} \cos \frac{n \pi y}{H}=f(y) \tag{2}
\end{equation*}
$$

To find A_{0}, integrate both sides of equation (2) with respect to y from 0 to H.

$$
\int_{0}^{H}\left(A_{0} L+\sum_{n=1}^{\infty} A_{n} \sinh \frac{n \pi L}{H} \cos \frac{n \pi y}{H}\right) d y=\int_{0}^{H} f(y) d y
$$

Split up the integral on the left and bring the constants in front.

$$
A_{0} L \int_{0}^{H} d y+\sum_{n=1}^{\infty} A_{n} \sinh \frac{n \pi L}{H} \underbrace{\int_{0}^{H} \cos \frac{n \pi y}{H} d y}_{=0}=\int_{0}^{H} f(y) d y
$$

Evaluate the integrals.

$$
A_{0} L H=\int_{0}^{H} f(y) d y
$$

So then

$$
A_{0}=\frac{1}{H L} \int_{0}^{H} f(y) d y .
$$

To find A_{n}, multiply both sides of equation (2) by $\cos (m \pi y / H)$, where m is an integer,

$$
A_{0} L \cos \frac{m \pi y}{H}+\sum_{n=1}^{\infty} A_{n} \sinh \frac{n \pi L}{H} \cos \frac{n \pi y}{H} \cos \frac{m \pi y}{H}=f(y) \cos \frac{m \pi y}{H}
$$

and then integrate both sides with respect to y from 0 to H.

$$
\int_{0}^{H}\left(A_{0} L \cos \frac{m \pi y}{H}+\sum_{n=1}^{\infty} A_{n} \sinh \frac{n \pi L}{H} \cos \frac{n \pi y}{H} \cos \frac{m \pi y}{H}\right) d y=\int_{0}^{H} f(y) \cos \frac{m \pi y}{H} d y
$$

Split up the integral on the left and bring the constants in front of them.

$$
A_{0} L \underbrace{\int_{0}^{H} \cos \frac{m \pi y}{H} d y}_{=0}+\sum_{n=1}^{\infty} A_{n} \sinh \frac{n \pi L}{H} \int_{0}^{H} \cos \frac{n \pi y}{H} \cos \frac{m \pi y}{H} d y=\int_{0}^{H} f(y) \cos \frac{m \pi y}{H} d y
$$

Because the cosine functions are orthogonal, the second integral on the left is zero if $n \neq m$. As a result, every term in the infinite series vanishes except for the $n=m$ one.

$$
A_{n} \sinh \frac{n \pi L}{H} \int_{0}^{H} \cos ^{2} \frac{n \pi y}{H} d y=\int_{0}^{H} f(y) \cos \frac{n \pi y}{H} d y
$$

$$
A_{n} \sinh \frac{n \pi L}{H}\left(\frac{H}{2}\right)=\int_{0}^{H} f(y) \cos \frac{n \pi y}{H} d y
$$

So then

$$
A_{n}=\frac{2}{H \sinh \frac{n \pi L}{H}} \int_{0}^{H} f(y) \cos \frac{n \pi y}{H} d y \text {. }
$$

Part (g)

$$
\begin{aligned}
& \nabla^{2} u=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0, \quad 0 \leq x \leq L, 0 \leq y \leq H \\
& \frac{\partial u}{\partial x}(0, y)=0 \\
& \frac{\partial u}{\partial x}(L, y)=0 \\
& u(x, 0)=f(x)= \begin{cases}0 & x>L / 2 \\
1 & x<L / 2\end{cases} \\
& \frac{\partial u}{\partial y}(x, H)=0
\end{aligned}
$$

Because Laplace's equation and all but one of the boundary conditions are linear and homogeneous, the method of separation of variables can be applied. Assume a product solution of the form $u(x, y)=X(x) Y(y)$ and substitute it into the PDE

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0 \quad \rightarrow \quad \frac{\partial^{2}}{\partial x^{2}}[X(x) Y(y)]+\frac{\partial^{2}}{\partial y^{2}}[X(x) Y(y)]=0
$$

and the homogeneous boundary conditions.

$$
\begin{array}{lllll}
\frac{\partial u}{\partial x}(0, y)=0 & \rightarrow & X^{\prime}(0) Y(y)=0 & \rightarrow & X^{\prime}(0)=0 \\
\frac{\partial u}{\partial x}(L, y)=0 & \rightarrow & X^{\prime}(L) Y(y)=0 & \rightarrow & X^{\prime}(L)=0 \\
\frac{\partial u}{\partial y}(x, H)=0 & \rightarrow & X(x) Y^{\prime}(H)=0 & \rightarrow & Y^{\prime}(H)=0
\end{array}
$$

Separate variables in the PDE.

$$
Y \frac{d^{2} X}{d x^{2}}+X \frac{d^{2} Y}{d y^{2}}=0
$$

Divide both sides by $X(x) Y(y)$.

$$
\frac{1}{X} \frac{d^{2} X}{d x^{2}}+\frac{1}{Y} \frac{d^{2} Y}{d y^{2}}=0
$$

Bring the second term to the right side. (Note that the final answer will be the same regardless of which side the minus sign is on.)

$$
\underbrace{\frac{1}{X} \frac{d^{2} X}{d x^{2}}}_{\text {function of } x}=\underbrace{-\frac{1}{Y} \frac{d^{2} Y}{d y^{2}}}_{\text {function of } y}
$$

The only way a function of x can be equal to a function of y is if both are equal to a constant λ.

$$
\frac{1}{X} \frac{d^{2} X}{d x^{2}}=-\frac{1}{Y} \frac{d^{2} Y}{d y^{2}}=\lambda
$$

As a result of applying the method of separation of variables, the PDE has reduced to two ODEs - one in x and one in y.

$$
\left.\begin{array}{rl}
\frac{1}{X} \frac{d^{2} X}{d x^{2}} & =\lambda \\
-\frac{1}{Y} \frac{d^{2} Y}{d y^{2}} & =\lambda
\end{array}\right\}
$$

Values of λ for which nontrivial solutions of these equations exist are called the eigenvalues, and the solutions themselves are known as the eigenfunctions. We will solve the ODE for X first since there are two boundary conditions for it. Suppose first that λ is positive: $\lambda=\alpha^{2}$. The ODE for X becomes

$$
X^{\prime \prime}=\alpha^{2} X
$$

The general solution is written in terms of hyperbolic sine and hyperbolic cosine.

$$
X(x)=C_{1} \cosh \alpha x+C_{2} \sinh \alpha x
$$

Take a derivative of it.

$$
X^{\prime}(x)=\alpha\left(C_{1} \sinh \alpha x+C_{2} \cosh \alpha x\right)
$$

Apply the boundary conditions to determine C_{1} and C_{2}.

$$
\begin{aligned}
& X^{\prime}(0)=\alpha\left(C_{2}\right)=0 \\
& X^{\prime}(L)=\alpha\left(C_{1} \sinh \alpha L+C_{2} \cosh \alpha L\right)=0
\end{aligned}
$$

The first equation implies that C_{2}, so the second one reduces to $C_{1} \alpha \sinh \alpha L=0$. No nonzero value of α satisfies this equation, so C_{1} must be zero. The trivial solution is obtained, so there are no positive eigenvalues. Suppose secondly that λ is zero: $\lambda=0$. The ODE for X becomes

$$
X^{\prime \prime}=0 .
$$

Integrate both sides with respect to x.

$$
X^{\prime}=C_{3}
$$

Apply the boundary conditions to determine C_{3}.

$$
\begin{aligned}
& X^{\prime}(0)=C_{3}=0 \\
& X^{\prime}(L)=C_{3}=0
\end{aligned}
$$

Consequently,

$$
X^{\prime}=0 .
$$

Integrate both sides with respect to x once more.

$$
X(x)=C_{4}
$$

Because $X(x)$ is nonzero, zero is an eigenvalue; the eigenfunction associated with it is $X_{0}(x)=1$. With this value for λ, solve the ODE for Y.

$$
Y^{\prime \prime}=0
$$

Integrate both sides with respect to y.

$$
Y^{\prime}=C_{5}
$$

Apply the boundary condition to determine one of the constants.

$$
Y^{\prime}(H)=C_{5}=0
$$

So then

$$
Y^{\prime}=0 .
$$

Integrate both sides with respect to y once more.

$$
Y(y)=C_{6}
$$

Suppose thirdly that λ is negative: $\lambda=-\beta^{2}$. The ODE for X becomes

$$
X^{\prime \prime}=-\beta^{2} X
$$

The general solution is written in terms of sine and cosine.

$$
X(x)=C_{7} \cos \beta x+C_{8} \sin \beta x
$$

Take a derivative of it.

$$
X^{\prime}(x)=\beta\left(-C_{7} \sin \beta x+C_{8} \cos \beta x\right)
$$

Apply the boundary conditions to determine C_{7} and C_{8}.

$$
\begin{aligned}
& X^{\prime}(0)=\beta\left(C_{8}\right)=0 \\
& X^{\prime}(L)=\beta\left(-C_{7} \sin \beta L+C_{8} \cos \beta L\right)=0
\end{aligned}
$$

The first equation implies that $C_{8}=0$, so the second one reduces to $-C_{7} \beta \sin \beta L=0$. To avoid getting the trivial solution, we insist that $C_{7} \neq 0$. Then

$$
\begin{aligned}
-\beta \sin \beta L & =0 \\
\sin \beta L & =0 \\
\beta L & =n \pi, \quad n=1,2, \ldots \\
\beta_{n} & =\frac{n \pi}{L} .
\end{aligned}
$$

There are negative eigenvalues $\lambda=-n^{2} \pi^{2} / L^{2}$, and the eigenfunctions associated with them are

$$
\begin{aligned}
X(x) & =C_{7} \cos \beta x+C_{8} \sin \beta x \\
& =C_{7} \cos \beta x \quad \rightarrow \quad X_{n}(x)=\cos \frac{n \pi x}{L} .
\end{aligned}
$$

With this formula for λ, solve the ODE for Y now.

$$
\frac{d^{2} Y}{d y^{2}}=\frac{n^{2} \pi^{2}}{L^{2}} Y
$$

The general solution is written in terms of hyperbolic sine and hyperbolic cosine.

$$
Y(y)=C_{9} \cosh \frac{n \pi y}{L}+C_{10} \sinh \frac{n \pi y}{L}
$$

Take a derivative of it.

$$
Y^{\prime}(y)=\frac{n \pi}{L}\left(C_{9} \sinh \frac{n \pi y}{L}+C_{10} \cosh \frac{n \pi y}{L}\right)
$$

Use the boundary condition to determine one of the constants.

$$
Y^{\prime}(H)=\frac{n \pi}{L}\left(C_{9} \sinh \frac{n \pi H}{L}+C_{10} \cosh \frac{n \pi H}{L}\right)=0 \quad \rightarrow \quad C_{10}=-C_{9} \frac{\sinh \frac{n \pi H}{L}}{\cosh \frac{n \pi H}{L}}
$$

So then

$$
\begin{aligned}
Y(y) & =C_{9} \cosh \frac{n \pi y}{L}+C_{10} \sinh \frac{n \pi y}{L} \\
& =C_{9} \cosh \frac{n \pi y}{L}-C_{9} \frac{\sinh \frac{n \pi H}{L}}{\cosh \frac{n \pi H}{L}} \sinh \frac{n \pi y}{L} \\
& =\frac{C_{9}}{\cosh \frac{n \pi H}{L}}\left(\cosh \frac{n \pi H}{L} \cosh \frac{n \pi y}{L}-\sinh \frac{n \pi H}{L} \sinh \frac{n \pi y}{L}\right) \\
& =\frac{C_{9}}{\cosh \frac{n \pi H}{L}} \cosh \frac{n \pi(H-y)}{L} \rightarrow \quad Y_{n}(y)=\cosh \frac{n \pi(H-y)}{L} .
\end{aligned}
$$

According to the principle of superposition, the general solution to the PDE for u is a linear combination of $X(x) Y(y)$ over all the eigenvalues.

$$
u(x, y)=A_{0}+\sum_{n=1}^{\infty} A_{n} \cos \frac{n \pi x}{L} \cosh \frac{n \pi(H-y)}{L}
$$

Use the final inhomogeneous boundary condition $u(x, 0)=f(x)$ to determine A_{0} and A_{n}.

$$
\begin{equation*}
u(x, 0)=A_{0}+\sum_{n=1}^{\infty} A_{n} \cosh \frac{n \pi H}{L} \cos \frac{n \pi x}{L}=f(x) \tag{3}
\end{equation*}
$$

To find A_{0}, integrate both sides of equation (3) with respect to x from 0 to L.

$$
\int_{0}^{L}\left(A_{0}+\sum_{n=1}^{\infty} A_{n} \cosh \frac{n \pi H}{L} \cos \frac{n \pi x}{L}\right) d x=\int_{0}^{L} f(x) d x
$$

Split up the integral on the left and bring the constants in front. Also, write out the integral on the right.

$$
\begin{gathered}
A_{0} \int_{0}^{L} d x+\sum_{n=1}^{\infty} A_{n} \cosh \frac{n \pi H}{L} \underbrace{\int_{0}^{L} \cos \frac{n \pi x}{L} d x}_{=0}=\int_{0}^{L / 2}(1) d x+\int_{L / 2}^{L}(0) d x \\
A_{0} L=\frac{L}{2}
\end{gathered}
$$

So then

$$
A_{0}=\frac{1}{2} .
$$

To find A_{n}, multiply both sides of equation (3) by $\cos (m \pi x / L)$, where m is an integer,

$$
A_{0} \cos \frac{m \pi x}{L}+\sum_{n=1}^{\infty} A_{n} \cosh \frac{n \pi H}{L} \cos \frac{n \pi x}{L} \cos \frac{m \pi x}{L}=f(x) \cos \frac{m \pi x}{L}
$$

and then integrate both sides with respect to x from 0 to L.

$$
\int_{0}^{L}\left(A_{0} \cos \frac{m \pi x}{L}+\sum_{n=1}^{\infty} A_{n} \cosh \frac{n \pi H}{L} \cos \frac{n \pi x}{L} \cos \frac{m \pi x}{L}\right) d x=\int_{0}^{L} f(x) \cos \frac{m \pi x}{L} d x
$$

Split up the integral on the left and bring the constants in front. Also, write out the integral on the right.

$$
\begin{aligned}
A_{0} \underbrace{\int_{0}^{L} \cos \frac{m \pi x}{L} d x}_{=0}+\sum_{n=1}^{\infty} A_{n} \cosh \frac{n \pi H}{L} \int_{0}^{L} \cos \frac{n \pi x}{L} & \cos \frac{m \pi x}{L} d x \\
& =\int_{0}^{L / 2}(1) \cos \frac{m \pi x}{L} d x+\int_{L / 2}^{L}(0) \cos \frac{m \pi x}{L} d x
\end{aligned}
$$

Since the cosine functions are orthogonal, the second integral on the left is zero if $n \neq m$. As a result, every term in the infinite series vanishes except for the $n=m$ one.

$$
\begin{gathered}
A_{n} \cosh \frac{n \pi H}{L} \int_{0}^{L} \cos ^{2} \frac{n \pi x}{L} d x=\int_{0}^{L / 2} \cos \frac{n \pi x}{L} d x \\
A_{n} \cosh \frac{n \pi H}{L}\left(\frac{L}{2}\right)=\frac{L}{n \pi} \sin \frac{n \pi}{2}
\end{gathered}
$$

So then

$$
A_{n}=\frac{2}{n \pi \cosh \frac{n \pi H}{L}} \sin \frac{n \pi}{2}
$$

and

$$
u(x, y)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n \pi \cosh \frac{n \pi H}{L}} \sin \frac{n \pi}{2} \cos \frac{n \pi x}{L} \cosh \frac{n \pi(H-y)}{L} .
$$

Notice that the summand is zero if n is even. The solution can thus be simplified (that is, made to converge faster) by summing over the odd integers only. Make the substitution $n=2 p-1$ in the sum.

$$
\begin{aligned}
u(x, y) & =\frac{1}{2}+\sum_{2 p-1=1}^{\infty} \frac{2}{(2 p-1) \pi \cosh \frac{(2 p-1) \pi H}{L}} \sin \frac{(2 p-1) \pi}{2} \cos \frac{(2 p-1) \pi x}{L} \cosh \frac{(2 p-1) \pi(H-y)}{L} \\
& =\frac{1}{2}+\sum_{p=1}^{\infty} \frac{2}{(2 p-1) \pi \cosh \frac{(2 p-1) \pi H}{L}}\left[-(-1)^{p}\right] \cos \frac{(2 p-1) \pi x}{L} \cosh \frac{(2 p-1) \pi(H-y)}{L}
\end{aligned}
$$

Therefore,

$$
u(x, y)=\frac{1}{2}-\frac{2}{\pi} \sum_{p=1}^{\infty} \frac{(-1)^{p}}{(2 p-1) \cosh \frac{(2 p-1) \pi H}{L}} \cos \frac{(2 p-1) \pi x}{L} \cosh \frac{(2 p-1) \pi(H-y)}{L} .
$$

Part (h)

$$
\begin{aligned}
& \nabla^{2} u=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0, \quad 0 \leq x \leq L, 0 \leq y \leq H \\
& u(0, y)=0 \\
& u(L, y)=g(y) \\
& u(x, 0)=0 \\
& u(x, H)=0
\end{aligned}
$$

Because Laplace's equation and all but one of the boundary conditions are linear and homogeneous, the method of separation of variables can be applied. Assume a product solution of the form $u(x, y)=X(x) Y(y)$ and substitute it into the PDE

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0 \quad \rightarrow \quad \frac{\partial^{2}}{\partial x^{2}}[X(x) Y(y)]+\frac{\partial^{2}}{\partial y^{2}}[X(x) Y(y)]=0
$$

and the homogeneous boundary conditions.

$$
\begin{array}{lllll}
u(0, y)=0 & \rightarrow & X(0) Y(y)=0 & \rightarrow & X(0)=0 \\
u(x, 0)=0 & \rightarrow & X(x) Y(0)=0 & \rightarrow & Y(0)=0 \\
u(x, H)=0 & \rightarrow & X(x) Y(H)=0 & \rightarrow & Y(H)=0
\end{array}
$$

Separate variables in the PDE.

$$
Y \frac{d^{2} X}{d x^{2}}+X \frac{d^{2} Y}{d y^{2}}=0
$$

Divide both sides by $X(x) Y(y)$.

$$
\frac{1}{X} \frac{d^{2} X}{d x^{2}}+\frac{1}{Y} \frac{d^{2} Y}{d y^{2}}=0
$$

Bring the second term to the right side. (Note that the final answer will be the same regardless of which side the minus sign is on.)

$$
\underbrace{\frac{1}{X} \frac{d^{2} X}{d x^{2}}}_{\text {function of } x}=\underbrace{-\frac{1}{Y} \frac{d^{2} Y}{d y^{2}}}_{\text {function of } y}
$$

The only way a function of x can be equal to a function of y is if both are equal to a constant λ.

$$
\frac{1}{X} \frac{d^{2} X}{d x^{2}}=-\frac{1}{Y} \frac{d^{2} Y}{d y^{2}}=\lambda
$$

As a result of applying the method of separation of variables, the PDE has reduced to two ODEs - one in x and one in y.

$$
\left.\begin{array}{rl}
\frac{1}{X} \frac{d^{2} X}{d x^{2}} & =\lambda \\
-\frac{1}{Y} \frac{d^{2} Y}{d y^{2}} & =\lambda
\end{array}\right\}
$$

Values of λ for which nontrivial solutions of these equations exist are called the eigenvalues, and the solutions themselves are known as the eigenfunctions. We will solve the ODE for Y first since
there are two boundary conditions for it. Suppose first that λ is positive: $\lambda=\alpha^{2}$. The ODE for Y becomes

$$
Y^{\prime \prime}=-\alpha^{2} Y
$$

The general solution is written in terms of sine and cosine.

$$
Y(y)=C_{1} \cos \alpha y+C_{2} \sin \alpha y
$$

Apply the boundary conditions to determine C_{1} and C_{2}.

$$
\begin{aligned}
Y(0) & =C_{1}=0 \\
Y(H) & =C_{1} \cos \alpha H+C_{2} \sin \alpha H=0
\end{aligned}
$$

The second equation reduces to $C_{2} \sin \alpha H=0$. To avoid getting the trivial solution, we insist that $C_{2} \neq 0$. Then

$$
\begin{aligned}
\sin \alpha H & =0 \\
\alpha H & =n \pi, \quad n=1,2, \ldots \\
\alpha_{n} & =\frac{n \pi}{H} .
\end{aligned}
$$

There are positive eigenvalues $\lambda=n^{2} \pi^{2} / H^{2}$, and the eigenfunctions associated with them are

$$
\begin{aligned}
Y(y) & =C_{1} \cos \alpha y+C_{2} \sin \alpha y \\
& =C_{2} \sin \alpha y \quad \rightarrow \quad Y_{n}(y)=\sin \frac{n \pi y}{H} .
\end{aligned}
$$

With this formula for λ, the ODE for X becomes

$$
\frac{d^{2} X}{d x^{2}}=\frac{n^{2} \pi^{2}}{H^{2}} X
$$

The general solution is written in terms of hyperbolic sine and hyperbolic cosine.

$$
X(x)=C_{3} \cosh \frac{n \pi x}{H}+C_{4} \sinh \frac{n \pi x}{H}
$$

Apply the boundary condition to determine one of the constants.

$$
X(0)=C_{3}=0
$$

So then

$$
X(x)=C_{4} \sinh \frac{n \pi x}{H} \quad \rightarrow \quad X_{n}(x)=\sinh \frac{n \pi x}{H} .
$$

Suppose secondly that λ is zero: $\lambda=0$. The ODE for Y becomes

$$
Y^{\prime \prime}=0 .
$$

Integrate both sides with respect to y twice.

$$
Y(y)=C_{5} y+C_{6}
$$

Apply the boundary conditions to determine C_{5} and C_{6}.

$$
\begin{aligned}
Y(0) & =C_{6}=0 \\
Y(H) & =C_{5} H+C_{6}=0
\end{aligned}
$$

The second equation reduces to $C_{5} H=0$, which means $C_{5}=0$. The trivial solution $Y(y)=0$ is obtained, so zero is not an eigenvalue. Suppose thirdly that λ is negative: $\lambda=-\beta^{2}$. The ODE for Y becomes

$$
Y^{\prime \prime}=\beta^{2} Y
$$

The general solution is written in terms of hyperbolic sine and hyperbolic cosine.

$$
Y(y)=C_{7} \cosh \beta y+C_{8} \sinh \beta y
$$

Apply the boundary conditions to determine C_{7} and C_{8}.

$$
\begin{aligned}
Y(0) & =C_{7}=0 \\
Y(H) & =C_{7} \cosh \beta H+C_{8} \sinh \beta H=0
\end{aligned}
$$

The second equation reduces to $C_{8} \sinh \beta H=0$. No nonzero value of β can satisfy this equation, so C_{8} must be zero. The trivial solution $Y(y)=0$ is obtained, which means there are no negative eigenvalues. According to the principle of superposition, the general solution to the PDE for u is a linear combination of $X(x) Y(y)$ over all the eigenvalues.

$$
u(x, y)=\sum_{n=1}^{\infty} B_{n} \sinh \frac{n \pi x}{H} \sin \frac{n \pi y}{H}
$$

Use the remaining inhomogeneous boundary condition $u(L, y)=g(y)$ to determine B_{n}.

$$
u(L, y)=\sum_{n=1}^{\infty} B_{n} \sinh \frac{n \pi L}{H} \sin \frac{n \pi y}{H}=g(y)
$$

Multiply both sides by $\sin (m \pi y / H)$, where m is an integer,

$$
\sum_{n=1}^{\infty} B_{n} \sinh \frac{n \pi L}{H} \sin \frac{n \pi y}{H} \sin \frac{m \pi y}{H}=g(y) \sin \frac{m \pi y}{H}
$$

and then integrate both sides with respect to y from 0 to H.

$$
\int_{0}^{H} \sum_{n=1}^{\infty} B_{n} \sinh \frac{n \pi L}{H} \sin \frac{n \pi y}{H} \sin \frac{m \pi y}{H} d y=\int_{0}^{H} g(y) \sin \frac{m \pi y}{H} d y
$$

Bring the constants in front of the integral on the left.

$$
\sum_{n=1}^{\infty} B_{n} \sinh \frac{n \pi L}{H} \int_{0}^{H} \sin \frac{n \pi y}{H} \sin \frac{m \pi y}{H} d y=\int_{0}^{H} g(y) \sin \frac{m \pi y}{H} d y
$$

Because the sine functions are orthogonal, the integral on the left is zero if $n \neq m$. As a result, every term in the infinite series vanishes except for the $n=m$ one.

$$
B_{n} \sinh \frac{n \pi L}{H} \int_{0}^{H} \sin ^{2} \frac{n \pi y}{H} d y=\int_{0}^{H} g(y) \sin \frac{n \pi y}{H} d y
$$

$$
B_{n} \sinh \frac{n \pi L}{H}\left(\frac{H}{2}\right)=\int_{0}^{H} g(y) \sin \frac{n \pi y}{H} d y
$$

So then

$$
B_{n}=\frac{2}{H \sinh \frac{n \pi L}{H}} \int_{0}^{H} g(y) \sin \frac{n \pi y}{H} d y .
$$

